Targeted Gene Expression in Zebrafish Exposed to Chlorpyrifos-Oxon Confirms Phenotype-Specific Mechanisms Leading to Adverse Outcomes
نویسندگان
چکیده
Zebrafish models for mild, moderate, and severe acute organophosphorus poisoning were previously developed by exposing zebrafish larvae to chlopyrifos-oxon. The phenotype of these models was characterized at several levels of biological organization. Oxidative stress and mitochondrial dysfunction were found to be involved in the development of the more severe phenotype. Here we used targeted gene expression to understand the dose-responsiveness of those two pathways and their involvement on generating the different zebrafish models. As the severe phenotype is irreversible after only 3 h of exposure, we also analyzed the response of the oxidative stress pathway at 3 and 24 h. Some of the genes related to oxidative stress were already differentially expressed at 3 h. There was an increase in differentially expressed genes related to both oxidative stress and mitochondrial function from the more mild to the more severe phenotype, suggesting the involvement of these mechanisms in increasing phenotype severity. Temporal data suggest that peroxynitrite leading to lipid peroxidation might be involved in phenotype transition and irreversibility.
منابع مشابه
The Relationship between PON1 phenotype and PON1-192 genotype in detoxification of three oxons by human liver.
Phosphorothioate pesticides (OP) such as diazinon, chlorpyrifos, and parathion are activated to highly toxic oxon metabolites by the cytochromes P450 (P450s), mainly in the liver. Simultaneously, the P450s catalyze detoxification of OP to nontoxic dearylated metabolites. The oxon is then detoxified to the dearylated metabolite by PON1, an A-esterase present in the liver and blood serum. The aim...
متن کاملNonenzymatic Functions of Acetylcholinesterase Splice Variants in the Developmental Neurotoxicity of Organophosphates: Chlorpyrifos, Chlorpyrifos Oxon, and Diazinon
BACKGROUND Organophosphate pesticides affect mammalian brain development through mechanisms separable from the inhibition of acetylcholinesterase (AChE) enzymatic activity and resultant cholinergic hyperstimulation. In the brain, AChE has two catalytically similar splice variants with distinct functions in development and repair. The rare, read-through isoform, AChE-R, is preferentially induced...
متن کاملA Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology
Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors-reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon...
متن کاملAbiotic transformation of chlorpyrifos to chlorpyrifos oxon in chlorinated water.
In vivo transformation of chlorpyrifos to chlorpyrifos oxon is believed to be a prerequisite for this insecticide to display acute toxicity to organisms. We discovered that active chlorine dispersed in water causes the rapid abiotic transformation of chlorpyrifos to chlorpyrifos oxon. The proposed mechanism for the transformation is an electrophilic attack by hypochlorous acid (HOCl) on the thi...
متن کاملDecreased reelin expression and organophosphate pesticide exposure alters mouse behaviour and brain morphology
Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders, including ASDs (autism spectrum disorders). In this study, we examined the combinatorial effect of two factors thought to be involved in autism--reduction in the expression of the extracellular matrix protein reelin and prenatal exposure to an organophosphate pesticide, CPO (chlorpyrifos oxon). Mice...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 96 شماره
صفحات -
تاریخ انتشار 2016